If it's not what You are looking for type in the equation solver your own equation and let us solve it.
101=-16t^2+80t+5
We move all terms to the left:
101-(-16t^2+80t+5)=0
We get rid of parentheses
16t^2-80t-5+101=0
We add all the numbers together, and all the variables
16t^2-80t+96=0
a = 16; b = -80; c = +96;
Δ = b2-4ac
Δ = -802-4·16·96
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-16}{2*16}=\frac{64}{32} =2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+16}{2*16}=\frac{96}{32} =3 $
| 1/9x=-11 | | 10x-165=111-2x | | 1/3n+4-1=n-1 | | 21=-14x-28 | | 2/9i+4/27=2/5 | | 21x=-14x-28 | | 4(2x+15)^(3/5)=1372 | | X^2+6x+x+14=12x-2 | | 15(0.5)^x=60 | | X-80=65+6x | | 4/x+3=2/8x-1 | | 3x5=17 | | a-2.75=4.03 | | 14+5x=34 | | 2y+9=-7 | | 94=-3(5a-8)-5 | | 5a-12=2 | | -12d+15=15-11d | | 1.4+y/3=-6.1 | | 9x+210=4x+240 | | s+1/4=196 | | 7x4=3x+120 | | 9.3=-8.2+7x | | 2 3·z=11 9 | | 4.1(m+16.4)-2.1m=16 | | 11=x/10.24+7 | | x-5/14=10 | | -1.1+v/8=-13.9 | | 15x-19+13x+3=180 | | -90+12x=150-4x | | T(t)=-0.021t^2+0.4536t+98.9. | | 6x-5=6x-1+7 |